Boulder, CA

TINE CURK GROUP


Tine Curk

Contact:
Northwestern University
Dept. of Mat. Sci. & Eng.
2220 Campus Drive, Cook 2036
Evanston, IL 60208
email: [surname][at]northwestern.edu
Google scholar


Welcome!
I am currently a Marie Curie postdoctoral fellow at Northwestern University, working in the group of Prof. Erik Luijten and collaborating with the group of Prof. Samuel I. Stupp.
Education:

  • Ph.D. in Theoretical Chemistry (2016),
    University of Cambridge, UK.
    Advisor: Prof. Daan Frenkel
  • B.Sc. and M.Sc. in Physics (2012),
    University of Maribor, Slovenia.
My research interests span from statistical physics and chemistry to soft materials and polymer science. While these fields are diverse, numerous important problems require understanding the collective processes arising from many interacting components. I delight in applying the general but powerful tools of statistical mechanics and numerical simulations to uncover intriguing and often counter-intuitive collective phenomena. I very much enjoy working with experimentalists.

RESEARCH PROJECTS

Charge regulation in molecules, polyelectrolytes and nanoparticles


some thing

Nanoparticles, polyelectrolytes and biomolecules in solution acquire charge through the dissociation or association of surface groups. Thus, a proper description of their electrostatic interactions requires sampling of protonation states and the use of charge-regulating boundary conditions rather than the commonly employed constant-charge approximation. Charge regulation effects can qualitatively change structures due to global charge redistribution, stabilizing asymmetric constructs. We provide an open-source implementation of the charge-regulation solver for the LAMMPS molecular dynamics package.

  • Charge-regulation effects in nanoparticle self-assembly
    T. Curk and E. Luijten
    Phys. Rev. Lett. 126, 38003 (2021) [Editor’s Suggestion]
  • Accelerated simulation method for charge regulation effects
    T. Curk, J. Yuan and E. Luijten
    J. Chem. Phys (under review) [preprint]
  • Optimal packing of polymers (DNA) in viral capsids.


    some thing

    Although the free energy of a genome packing into a virus is dominated by DNA-DNA interactions, ordering of the DNA inside the capsid is elasticity driven, suggesting general solutions with DNA organized into spool-like domains. Using analytical calculations and computer simulations of a long elastic filament confined to a spherical container, we show that the ground state is not a single spool as assumed hitherto, but an ordering mosaic of multiple homogeneously ordered domains. At low densities, we observe concentric spools, while at higher densities, other morphologies emerge, which resemble topological links.

  • Spontaneous domain formation in spherically-confined elastic filaments
    T. Curk*, J. D. Farrell*, J. Dobnikar, R. Podgornik
    Phys. Rev. Lett. 123, 047801 (2019)
  • Designing superselective targeting in multivalent polymers


    some thing

    We rationalized design rules for super-selective targeting using multivalent polymers, in collaboration with Dr. Galina Dubacheva at ENS Paris-Saclay and Prof. Ralf Richter at Leeds. We have also improved the sequence design of nucleotide probes for pathogen genome detection in collaboration with Prof. Rosalind J. Allen at Edinburgh

  • Computational design of probes to detect bacterial genomes by multivalent binding
    T. Curk, et al, and Rosalind J. Allen
    Proc. Nat. Acad. Sci. 117, 8719 (2020)
  • Multivalent Recognition at Fluid Surfaces: The Interplay of Receptor Clustering and Superselectivity
    G. V. Dubacheva*, T. Curk*, D. Frenkel, and R. P. Richter
    J. Am. Chem. Soc. 141, 2577 (2019)
  • Designing multivalent probes for tunable superselective targeting
    G. V. Dubacheva, T. Curk, R. Auzly-Velty, D. Frenkel, and R. P. Richter
    Proc. Natl. Acad. Sci. U.S.A. 112, 5579–5584 (2015)
  • Superselective targeting using multivalent polymers
    G. V. Dubacheva, T. Curk, B. M. Mognetti, R. Auzly-Velty, D. Frenkel, and R. P. Richter
    J. Am. Chem. Soc. 136, 1722–1725 (2014)
  • Designing multivalent interactions


    some thing

    Interactions with multicomponent membranes are difficult to predict due to Here we analytically derived design rules for multicomponent interactions and, supported by Monte Carlo simulations, demonstrated a general route towards targeting multicomponent cell membranes. We also show the effect of intrinsic curvature of receptors, in collaboration with Andjela Saric at UCL. Work on immune response via activation of TLR9 receptors by multivalent DNA--peptide aggregates led to a breakthrough in our understanding of immune system activation by DNA-peptide complexes on the cellular level and points to a physical origin of certain autoimmune diseases like Psoriasis. In collaboration with the experimental group of Gerard Wong at UCLA,

  • Optimal multivalent targeting of membranes with many distinct receptors
    T. Curk, J. Dobnikar, and D. Frenkel
    Proc. Natl. Acad. Sci. U.S.A. 114, 7210–7215 (2017)
  • Controlling cargo trafficking in multicomponent membranes
    T. Curk P. Wirnsberger, J. Dobnikar, D. Frenkel, and A. Šarić
    Nano Lett. 18, 9 (2018) [front cover]
  • Liquid-crystalline ordering of antimicrobial peptide-DNA complexes controls TLR9 activation
    N. W. Schmidt*, F. Jin*, R. Lande*, T. Curk*, W. Xian, C. Lee, L. Frasca, D. Frenkel, J. Dobnikar, M. Gilliet, and G. C. L. Wong
    Nature Materials 14, 696–700 (2015)
  • Phase behavior of polymer–nanoparticle composites


    some thing

    We showed how confining nanoparticles to polymer brushes leads to microphase separation and pattern formation. Patterns can be controlled by external fields, thus opening up new routes for the design of thin structured films.

  • Nanoparticle organization in sandwiched polymer brushes
    T. Curk, F. J. Martinez-Veracoechea, D. Frenkel, and J. Dobnikar
    Nano Lett. 14, 2617–2622 (2014)
  • Collective ordering of colloids in grafted polymer layers
    T. Curk, F. J. Martinez-Veracoechea, D. Frenkel, and J. Dobnikar
    Soft Matter 9, 5565 (2013)
  • JOURNAL PUBLICATIONS
    1. Phase separation and ripening in a viscoelastic medium
      T. Curk and E. Luijten
      Preprint
    2. Discontinuous conformational transition and actuation of pH-responsive hydrogels
      J. Yuan and T. Curk
      Preprint
    3. Hybrid Nanocrystals of Small Molecules and Chemically Disordered Polymers
      E. Bruckner*, T. Curk*, Luka Đorđević, Ziwei Wang, Ruomeng Qiu, Adam Dannenhoffer, Hiroaki Sai, E. Luijten, and S. I. Stupp
      Nature Nano. (Under review)
    4. Unraveling crystal growth at the nanoscale
      B. Luo, Z. Wang, T. Curk, G. Watson, C. Liu, A. Kim, Z. Ou, E. Luijten, and Q. Chen
      Nature (under review)
    5. Accelerated simulation method for charge regulation effects
      T. Curk, J. Yuan and E. Luijten
      J. Chem. Phys (under review) [preprint]
    6. Charge-regulation effects in nanoparticle self-assembly
      T. Curk and E. Luijten
      Phys. Rev. Lett. 126, 38003 (2021) [Editor’s Suggestion]
    7. Computational design of probes to detect bacterial genomes by multivalent binding
      T. Curk, C. A. Brackley, J. D. Farrell, Z. Xing, D. Joshi, S. Direito, U. Bren, S. Angioletti-Uberti, J. Dobnikar, E. Eiser, D. Frenkel, and Rosalind J. Allen
      Proc. Nat. Acad. Sci. 117, 8719 (2020)
    8. First-order hyper-selective binding transition of multivalent particles under force
      T. Curk, N. Tito
      J. Phys. Cond. Mat. 32, 214002 (2020)
    9. Spontaneous domain formation in spherically-confined elastic filaments
      T. Curk*, J. D. Farrell*, J. Dobnikar, R. Podgornik
      Phys. Rev. Lett. 123, 047801 (2019)
    10. Multivalent Recognition at Fluid Surfaces: The Interplay of Receptor Clustering and Superselectivity
      G. V. Dubacheva*, T. Curk*, D. Frenkel, and R. P. Richter
      J. Am. Chem. Soc. 141, 2577 (2019)
    11. Bonding interactions between ligand-decorated colloidal particles
      T. Curk, U. Bren, and J. Dobnikar
      Mol. Phys. 116, 3392 (2018)
    12. Controlling cargo trafficking in multicomponent membranes
      T. Curk P. Wirnsberger, J. Dobnikar, D. Frenkel, and A. Šarić
      Nano Lett. 18, 9 (2018) [front cover]
    13. Coarse-grained simulation of DNA using LAMMPS
      O. Henrich, Y. A. Gutiérrez Fosado, T. Curk, and T. E. Ouldridge
      Eur. Phys. J. E 41, 57 (2018) [front cover]
    14. Design principles for super selectivity using multivalent interactions
      T. Curk, J. Dobnikar, and D. Frenkel
      Multivalency: Concepts, research and applications, edited by Jurriaan Huskens, Leonardo J. Prins, Reiner Haag, and Bart Jan Ravoo, Wiley (2018)
    15. Crystallinity of Double-Stranded RNA-Antimicrobial Peptide Complexes Modulates Toll-Like Receptor 3-Mediated Inflammation
      E. Y. Lee, T. Takahashi, T. Curk, J. Dobnikar, R.L. Gallo, and G. C. L. Wong
      ACS Nano 11, 12145–12155 (2017)
    16. Optimal multivalent targeting of membranes with many distinct receptors
      T. Curk, J. Dobnikar, and D. Frenkel
      Proc. Natl. Acad. Sci. U.S.A. 114, 7210–7215 (2017)
    17. A review of immune amplification via ligand clustering by self- assembled liquid-crystalline DNA complexes
      E. Y. Lee, C. K. Lee, N. W. Schmidt, F. Jin, R. Lande, T. Curk, D. Frenkel, J. Dobnikar M. Gilliet, and G. C. L. Wong
      Adv. Colloid Interface Sci. 232, 17–24 (2016)
    18. The Effect of Attractive Interactions and Macromolecular Crowding on Crystallins Association
      J. Wei, J. Dobnikar, T. Curk, and F. Song
      PloS one 11, e0151159 (2016)
    19. Rational design of molecularly imprinted polymers
      T. Curk, J. Dobnikar, and D. Frenkel
      Soft Matter 12 35 (2016) [front cover]
    20. Liquid-crystalline ordering of antimicrobial peptide-DNA complexes controls TLR9 activation
      N. W. Schmidt*, F. Jin*, R. Lande*, T. Curk*, W. Xian, C. Lee, L. Frasca, D. Frenkel, J. Dobnikar, M. Gilliet, and G. C. L. Wong
      Nature Materials 14, 696–700 (2015)
    21. Designing multivalent probes for tunable superselective targeting
      G. V. Dubacheva, T. Curk, R. Auzly-Velty, D. Frenkel, and R. P. Richter
      Proc. Natl. Acad. Sci. U.S.A. 112, 5579–5584 (2015)
    22. Nanoparticle organization in sandwiched polymer brushes
      T. Curk, F. J. Martinez-Veracoechea, D. Frenkel, and J. Dobnikar
      Nano Lett. 14, 2617–2622 (2014)
    23. Superselective targeting using multivalent polymers
      G. V. Dubacheva, T. Curk, B. M. Mognetti, R. Auzly-Velty, D. Frenkel, and R. P. Richter
      J. Am. Chem. Soc. 136, 1722–1725 (2014)
    24. A new configurational bias scheme for sampling supramolecular structures
      R. De Gernier, T. Curk, G. V. Dubacheva, R. P. Richter, and B. M. Mognetti
      J. Chem. Phys. 141, 244909 (2014)
    25. Collective ordering of colloids in grafted polymer layers
      T. Curk, F. J. Martinez-Veracoechea, D. Frenkel, and J. Dobnikar
      Soft Matter 9, 5565 (2013)
    26. Chemotactic Sensing towards ambient and secreted attractant Drives Collective Behaviour of E. coli
      T. Curk, D Marenduzzo, and J. Dobnikar
      PloS one 8, 74878 (2013)
    27. Layering, freezing, and re-entrant melting of hard spheres in soft confinement
      T. Curk, A. de Hoogh, F. J. Martinez-Veracoechea, E. Eiser, D. Frenkel, J. Dobnikar, and M. E. Leunissen
      Phys. Rev. E 85 (2012)
    28. Coarse Graining Escherichia coli Chemotaxis: From Multi-Flagella Propulsion to Logarithmic Sensing
      T. Curk, F. Matthus, Y. Brill-Karniely, and J. Dobnikar
      Advances in Systems Biology, 381 (2012)
    29. On the origin and characteristics of noise-induced Levy walks of E. coli
      F. Matthus, M. S. Mommer, T. Curk, and J. Dobnikar
      PloS one 6, 18623 (2011)
    THESIS
    1. Modeling multivalent interactions (Ph.D thesis)
      University of Cambridge, UK (2016) [electronic version]